Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY Winter Examination-2020

Subject Name: Fluid Mechanics - I

Subject Code: 4TE03FLM1		e: 4TE03FLM1 Branch: B.Tech (Civil)	Branch: B.Tech (Civil)	
Semest	er: 3	Date: 15/03/2021 Time: 11:00 To 02:00 Marks	s: 70	
Instruct (1) (2) (3) (4)	ions: Use o Instru Draw Assu	of Programmable calculator & any other electronic instrument is prohibited. actions written on main answer book are strictly to be obeyed. a neat diagrams and figures (if necessary) at right places. me suitable data if needed.		
Q-1		Attempt the following questions:	(14)	
	a)	As compared to flat plate, force of jet on a semi-circular vane will be	1	
	b)	In MLT system the dimensions of specific volume would be (a) L^{3} (b) ML^{3} (c) ML^{-3} (d) $M^{-1}L^{3}$	1	
	c)	A flow in which each liquid particle has definite path, and the paths of individual particle do not cross each other is called	1	
	d)	(a) Steady flow (b) Uniform flow (c) Streamline flow (d) Turbulent flow	1	
	u)	(a) Have no shape (b) Cannot be compressed (c) Both (a)and(b) (d) None	1	
	e)	When the metacentre of a floating body is lower than the centre of gravity,	1	
		then the body will be in		
		(a) Unstable equilibrium (b) Stable equilibrium (c) Neutral equilibrium (d) None of the above		
	f)	Bernoulli's theorem deals with the principal of conservation of	1	
	,	(a) Energy (b) Momentum (c) Mass (d) Force		
	g)	Weir may also be used to measure	1	
	b)	(a) Velocity of flow (b) Pressure (c) Discharge in river (d) Kinetic energy The tendency of small drop of fellon water to remain in a spherical form is	1	
	п)	due to the property of	1	
		(a) Viscosity (b) Adhesion (c) Capillary action (d) Surface tension		
	i)	Bernoulli's equation is applied to	1	
	•	(a) Venturimeter (b) Orifice meter (c) Pitot tube (d) All the above		
	j)	A flow through long pipe at constant rate is called	1	
		(c) Unsteady uniform flow (d) Unsteady non-uniform flow		
	k)	The weight per unit volume of a liquid at a standard temperature and	1	
	·	pressure is called		
		(a) Specific weight (b) Mass density (c) Specific gravity (d) None		
	I)	A flow in which the velocities of liquid particles at all sections of the pipe or channel are equal, is called as	1	

	m)	(a) Uniform flow (b) Laminar flow (c) Turbulent flow (d) Unsteady flow In an open cylindrical tank filled with water, a hole is made at the mid- point at the bottom. The spiral motion of the outgoing water is (a) Rotational (b) Irrotational (c) Forced vortex (d) Turbulent	1
	n)	In venturimeter, the ratio between throat diameter and pipe diameter is generally adopted as (a) $1 \cdot 2$ (b) $1 \cdot 4$ (c) $1 \cdot 8$ (d) $2 \cdot 11$	1
Atten	npt any	four questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
	A	experimentally? Explain with neat sketch.	/
	В	State and Prove Euler's equation of motion of a fluid element along a stream line stating the principle used.	7
Q-3		Attempt all questions	(14)
	A B	Explain briefly the following: i) Hydraulic gradient line ii) Energy gradient line. Explain jet impingement upon a stationary flat plate.	7 7
Q-4		Attempt all questions	(14)
	Α	Explain with sketch the relationship between the absolute pressure, atmospheric	7
	B	Enlist various types of manometers and explain inverted differential manometer in details.	7
0-5		Attempt all questions	(14)
	Α	Define the following terms: (i) Static pressure, (ii) Atmospheric pressure, (iii) Gauge pressure, (iv) Absolute pressure, (v) Buoyancy (vi) Meta centric height, (vii) Hydraulic	7
		gradient line	
	В	gradient line. Derive continuity equation for 2-D incompressible flow in Cartesian form stating the assumption made and principle involved.	7
Q-6	В	gradient line. Derive continuity equation for 2-D incompressible flow in Cartesian form stating the assumption made and principle involved. Attempt all questions	7 (14)
Q-6	B	gradient line. Derive continuity equation for 2-D incompressible flow in Cartesian form stating the assumption made and principle involved. Attempt all questions Drive discharge coefficient of Venturimetre.	7 (14) 7
Q-6	B A B	 gradient line. Derive continuity equation for 2-D incompressible flow in Cartesian form stating the assumption made and principle involved. Attempt all questions Drive discharge coefficient of Venturimetre. Differentiate between the following : (i) Laminar flow and Turbulent flow (ii) Steady flow and Unsteady flow. 	7 (14) 7 7
Q-6 Q-7	B A B	 gradient line. Derive continuity equation for 2-D incompressible flow in Cartesian form stating the assumption made and principle involved. Attempt all questions Drive discharge coefficient of Venturimetre. Differentiate between the following : (i) Laminar flow and Turbulent flow (ii) Steady flow and Unsteady flow. Attempt all questions 	7 (14) 7 7 (14)
Q-6 Q-7	B A B A	gradient line. Derive continuity equation for 2-D incompressible flow in Cartesian form stating the assumption made and principle involved. Attempt all questions Drive discharge coefficient of Venturimetre. Differentiate between the following : (i) Laminar flow and Turbulent flow (ii) Steady flow and Unsteady flow. Attempt all questions A pipe 20 cm in diameter and 45m long conveys water at a velocity of 2.5 m/sec.Find the head lost in friction 1) Using the Darcy weisbach formula 2) Using Chezy's equation Take $f = 0.006$ and $C = 57$	7 (14) 7 7 (14) 7
Q-6 Q-7	B A B A B	gradient line. Derive continuity equation for 2-D incompressible flow in Cartesian form stating the assumption made and principle involved. Attempt all questions Drive discharge coefficient of Venturimetre. Differentiate between the following : (i) Laminar flow and Turbulent flow (ii) Steady flow and Unsteady flow. Attempt all questions A pipe 20 cm in diameter and 45m long conveys water at a velocity of 2.5 m/sec.Find the head lost in friction 1) Using the Darcy weisbach formula 2) Using Chezy's equation Take $f = 0.006$ and $C = 57$ Obtain an expression for the force exerted by a jet of water on a fixed vertical plate in the direction of the jet.	7 (14) 7 7 (14) 7 7
Q-6 Q-7 Q-8	B A B A	gradient line. Derive continuity equation for 2-D incompressible flow in Cartesian form stating the assumption made and principle involved. Attempt all questions Drive discharge coefficient of Venturimetre. Differentiate between the following : (i) Laminar flow and Turbulent flow (ii) Steady flow and Unsteady flow. Attempt all questions A pipe 20 cm in diameter and 45m long conveys water at a velocity of 2.5 m/sec.Find the head lost in friction 1) Using the Darcy weisbach formula 2) Using Chezy's equation Take $f = 0.006$ and $C = 57$ Obtain an expression for the force exerted by a jet of water on a fixed vertical plate in the direction of the jet.	7 (14) 7 7 (14) 7 7 (14)

